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The Lifshitz-Slyozov-Wagner (LSW) theory was developed to model kinetics of precipitate 
growth from supersaturated solid solutions. The theory corresponds to a zero volume fraction 
approximation but has been modified for finite volume fractions in order to correspond to real 
situations. The LSW theory has been applied to study coarsening of grains in liquid-phase 
sintering and to the coarsening of pores in solid-state sintering systems. There are some additional 
factors not considered in the LSW theory which can influence the coarsening kinetics depend- 
ing on the system. It is important, therefore, to incorporate these factors into a coarsening 
model for better analysis of experimental data. The experimental evidence for the effects of 
these additional factors is reviewed together with the theoretical modifications made to the 
basic LSW theory in order to incorporate these factors. 

N o m e n c l a t u r e  E~ 
r Radius of the particle 
rc Critical particle radius E3 
C,. Solute concentration in equilibrium with a 

particle of radius r # 
Co Solute concentration in equilibrium with a #' 

particle of infinite radius rg 
a Particle/matrix interfacial energy %'br 
~, "y Constant 
Vm Molar volume of the precipitate ~r 
/: Mean radius of the particle at time t %r 
~0 Mean radius of the particle at the onset of 

coarsening UA 
Q Volume fraction of the precipitate X~ ~ 
k~r Sink factor kLsw 
De~ Effective diffusion coefficient J,~ 
D~b Diffusion coefficient along the grain boundary Di 
Dd Diffusion coefficient along the dislocation ~,. 
Z Number of dislocation lines crossing the sur- 

face c]r 
q Dislocation pipe cross-section 
l Average length of the dislocation 0 

1. I n t r o d u c t i o n  
Although the theoretical model of coarsening was 
developed almost 30 years ago [1-4] and successfully 
predicts coarsening kinetics qualitatively, we are still 
not able to apply it with confidence to the quantitative 
determination of parameters such as effective diffusion 
coefficient and interfacial energy. The major problem 
has been that the theory is clearly deficient in not 
taking into account several important factors affecting 
coarsening kinetics. A number of modifications of the 
basic theory have been proposed but none of these has 
found general acceptance and none account for all of  
the factors which can affect coarsening. 
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Elastic strain energy due to lattice mismatch 
between precipitate and matrix 
Elastic interaction energy due to oveHapping 
of strain fields 
Shear modulus of the matrix 
Shear modulus of the precipitate 
Time between contacts due to gravity 
Time between contacts due to Brownian 
motion 
Time required to fuse two particles 
Time required to remove a particle by Ost- 
wald ripening 
Driving force correction factor 
Solubility of component B in the solid phase 
LSW rate constant 
Flux of the ith component for the sth phase 
Diffusion coefficient of the ith component 
Average concentration of ith component in 
the matrix 
Equilibrium concentration of the ith compon- 
ent at the sth phase particle/matrix interface 
Equal to r/7 

The problem of the growth of precipitates by 
diffusion of solute in a matrix was first treated by 
Greenwood [1]. The basic equations which form the 
beginning of the analysis are the Gibbs-Thomson 
equation for the concentration of solute in equilib- 
rium with a particle of radius, r 

Cr = Ce exp (2~rVm/RTr) (1) 

and Fick's law for the diffusion flux, j 

j = -- D ~ r  (2) 

where Cr is the concentration Of the solute at the 
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particle/matrix interface in equilibrium with a particle 
of radius r, Ce is the solute concentration in equilib- 
rium with a particle of infinite size, ~ is the particle/ 
matrix surface energy, Vm is the molar volume of 
solute, D is the diffusivity and R T  has its usual 
meaning. 

The theory of coarsening was further developed by 
Lifshitz and Slyozov [2, 3] and independently by 
Wagner [4], commonly known as the LSW theory, to 
model the kinetics of precipitate growth from super- 
saturated solid solutions after the completion of 
nucleation. The LSW theory corresponds to a zero 
volume fraction approximation which obviously does 
not correspond to real situations. Because of this, 
considerable effort has gone into modifying the basic 
theory to allow for finite volume fractions of precipi- 
tate and also to allow for other factors affecting the 
coarsening kinetics. 

The theory of particle coarsening involves solution 
of three basic equations. These are: (i) the kinetic 
equation which gives the growth rate of an individual 
particle and is derived from the flux equation and the 
Gibbs-Thomson equation; (ii) equation of continuity 
which must be obeyed by the particle-size distribution; 
and (iii) a conservation equation for which the sol- 
ution of (i) must be acceptable. 

The kinetic equation for the dimensionless growth 
rate, g, using the notation of Lifshitz and Slyozov, is 
given by 

dz 
- - ( z  1/3 - 1 ) 7  - z ( 3 )  

g dr 

where z is a dimensionless parameter given by the 
ratio of the particle volume to the volume of a particle 
of critical size, i.e. z = r3/r3 c where rc and r are the 
critical and actual particle radius at time t, respectively. 
r is a dimensionless parameter of time given by 
In (r~/r~o) and ro 0 is the critical particle radius at the 
onset of coarsening. The quantity ? is given by 

dt' 
? - dx 3 (4) 

where x = rc/roo and t' is a dimensionless quantity 
proportional to the real time t and is given by 

2a Vm CDt 
t' = r~oR T (5) 

The rate equation in the LSW theory derived from 
Equations 3, 4 and 5 is 

?3 ?~ = k t  (6) 

and 
8a V~ DC~ 

k - 9 R T  (7) 

where ? is the mean radius of the particles at time t, ?0 
is the mean radius of the particles at time t = 0, i.e. at 
the start of coarsening, k is the rate constant and R is 
the gas constant. The continuity equation is given by 

d 
d---~ (O'g) + O' = 0 (8) 

where g = - (dz /dz )  from Equation 1 and qY is a 
function of  z only. 
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The conservation equation imposes a condition to 
the effect that the quantity of matter in a defined 
system remains constant. For a long ageing time it 
reduces to 

~cc  

K j0 ~b'zdz = 1 (9) 

where K = 4~r~o/3Q with Q = volume fraction of 
precipitate. 

Although the LSW theory was developed to study 
the kinetics of precipitate growth from supersaturated 
solid solution, it has also been applied to coarsening 
of grains in liquid-phase sintering [5-8] and to the 
coarsening of pores in solid-state sintering [9, 10]. 
There are, however, some additional factors not con- 
sidered in the LSW theory which might influence the 
kinetics of coarsening to different degrees depending 
on the system under study. Some comparisons between 
theory and experiment in the literature may have led 
to incorrect conclusions because important factors 
affecting the coarsening kinetics were ignored. We will 
now look at these factors and consider the experimental 
evidence for each of them and their effect on the 
coarsening kinetics. 

The factors considered to affect coarsening are: 
(1) volume fraction of second phase; 
(2) short-circuit diffusion paths such as surfaces, 

grain boundaries and dislocations; 
(3) elastic strain due to precipitate/matrix mismatch; 
(4) elastic interactions between precipitates; 
(5) loss of coherency; 
(6) diffusion, interface or intermediate type of 

growth control; 
(7) particle motion; 
(8) thermodynamically non-ideal systems; 
(9) multi-phase precipitates; 
(10) external stresses; 
(11) irradiation. 

Among the factors listed above, 10 and 11 will not be 
discussed here because these are externally imposed 
factors which can be removed. All systems will be 
influenced by one or more of the above factors. 

The LSW theory successfully predicts (size) 3 oc t 
and the total number of particles per unit volume, 
Nv o c t  l, but it gives a poor prediction of size distri- 
bution. This is evident from Fig. 1 which compares the 
LSW distribution with that determined experimen- 
tally [!1] from an N i - 2 2 a t %  C o - 1 3 a t %  A1 alloy. 
From experimental comparisons of rate constant it is 
difficult to assess whether the theory predicts good 
values or not because of a lack of knowledge of 
the parameters involved. It is important, therefore, 
to incorporate the above mentioned factors into a 
coarsening model for better analysis of experimental 
data and increase confidence in the parameter values 
thus derived. It should be recognized that Lifshitz and 
Slyozov [2, 3] have outlined some of the necessary 
modifications to the original theory for several factors, 
namely, elastic stresses and encounters. 

2 .  V o l u m e  f r a c t i o n  e f f e c t  

As mentioned earlier, the LSW theory is applicable 
only when the volume fraction of the precipitate is 



P 

2.40 

2.20 

2.00 

1.80 

1.60 

1.40 

1.20 

1.00 

0.80 

0,60 

0.40 

0.20 

0.00 
0.00 0.40 0.80 1.20 

I I 

Q = 0.32 - 
3, = 4.147 

LSW 

- - - L S E M  

1.60 2.00 

Figure 1 Comparison of the LSW and LSEM distribution function 
with an experimental distribution for Ni3Al-type precipitates in an 
alloy of nickel plus 22 at % Co and 13 at % AI. The volume fraction 
of precipitate in the alloy is 0.32 [11]. 

essentially zero. The LSW theory predicts the average 
particle volume to increase linearly with time and 
also predicts an asymptotic particle size distribution 
resulting from coarsening. Experimental measurements 
in systems where the volume fraction is greater than 
zero show that ?30C [ and Nv o c t  1 but the particle- 
size distributions are broader than predicted by the 
theory. In the LSW theory, Zener's approximation 
was adopted for the diffusion geometry, i.e. the 
growth rate is given by 

dr D ( C -  C~) 
- ( 1 0 )  

dt r 

Here C is the concentration of solute in the matrix in 
equilibrium with a particle of infinite radius. Equation 
10 becomes a poor approximation as the inter-particle 
distance decreases, corresponding to an increasing 
volume fraction, because the diffusion fields begin to 
overlap. In many commercial alloys second-phase 
volume fractions of ~ 6 0 %  are encountered, there- 
fore, the volume fraction effect is of considerable 
importance. 

Ardell [12] proposed a modification of the LSW 
theory, modifying the diffusion equation to take into 
account the volume fraction by using a more realistic 
diffusion geometry. In that theory the rate constant, k, 
is very sensitive to volume fraction. Tsumuraya and 
Miyata [13] have used several alternative diffusion 
geometries to predict theoretically the particle-size 
distributions (PSD). They used the full width at half 
maximum (FWHM) to compare the theoretical and 
experimental PSDs. These PSDs change in skewness 
as the volume fraction increases [11, 14]. For such 
distributions FWHM is a crude measure of the PSD 
and comparison with theoretical PSDs is better per- 
formed using statistical parameters such as coefficient 
of skewness, coefficient of kurtosis and standard 
deviation [15]. Asimov [16] also modified the coarsen- 
ing theory by modifying the diffusion geometry. These 
modifications [12, 13, 16] fail to perform the statistical 
averaging of the diffusional interactions between 
particles that is necessary for a satisfactory solution to 
this problem. 

Brailsford and Wynblatt (BW) [17] overcame this 
problem by using chemical rate theory to perform the 
statistical averaging. Glicksman and Voorhees [18, 19] 
approached the problem of multi-particle diffusion 
using computer simulation techniques. Marqusee and 
Ross [20] used a statistical method and Tokuyama 
and Kawasaki [21] proposed a statistical mechanical 
theory approach to model coarsening. The differences 
between these theories have been discussed in detail by 
Voorhees [22] and will not be reiterated here. All of 
these theories [i 7-21] account for the volume fraction 
of second-phase particles and also have an identical 
basic approach, but the final results are quantitatively 
different. Because the chemical rate theory approach 
of BW has been further developed and applied to 
experimental coarsening data, a brief discussion of the 
BW theory follows. The growth rate equation accord- 
ing to BW is 

v(r,t) - DW(r,_ R~){,fo~ rW(r, R~)f(r, t)g dr - ~(r)t 
r \ ;~ rW(r, Rl)f(r, t)dr J 

(ll) 
where 

1 + kTRI 
W(r, R I )  ~-- (12)  

1 + kT(R1-  1) 

Here k T is the square root of the sink factor and 
Rl = rQ-t"3. In their subsequent development of the 
theory, R~ was approximated by r which results in an 
expression for W(r, Rl) = (1 + kTRI). The final rate 
equation due to BW [17] is 

?3 _ ?~ = kt (13) 

and 

kBTe ~ (14) 

where 

2aVmDC~(dt)  
~' - kBrr~ ~ (15) 

The self-consistent development of the BW theory 
using Equation 12 has been made by Stevens [14] and 
the resulting theory is referred to as the Brailsford 
Wynblatt self consistent theory (BWSC). 

None of these theories takes into account the 
observed phenomenon of particle coalescence. Coalesc- 
ence is a volume-fraction effect in addition to the 
overlap of diffusion fields. The effect of coalescence or 
encounters between particles has been investigated by 
Davies et al. [11, 23] based on the theoretical treat- 
ment outlined by Lifshitz and Slyozov [2] and this 
modification is termed the Lifshitz-Slyozov encounter 
modified (LSEM) theory. It is assumed that coalesc- 
ence occurs instantaneously when two particles 
encounter, i.e. two particles are removed from the 
smaller size ranges in the distribution and one is added 
to the larger size ranges. This effect adds a term to the 
continuity Equation 8 

d - 3 Q  
d-~ (qSg) + q5 - 4 ~  I (16) 

where q5 = KqS'. I is the encounter integral and is 
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Figure 2 BWEM particle-size distribution as a function of volume 
fraction of the precipitate, Q. 

given by 

1 ( ' z  

I = ~ J0 z4(z - s )~ ( z ' )  dS  

- c~(z) fo (z + z')O(z') dz' (17) 

This development leads to broader PSDs than the 
LSW theory, as do other theoretical modifications. 
The predicted LSEM particle-size distribution for a 
volume fraction of 0.32 may be compared in Fig. 1 
with the LSW distribution and an experimental distri- 
bution. Coalescence should be important in liquid- 
matrix systems but may be reduced in solid-state 
systems because of matrix strains around precipitates. 
In solid-state systems, particles may have ordered 
structures and coalescence might lead to the forma- 
tion of APBs, which generally have much larger inter- 
facial energies than particle/matrix interfaces. In this 
case there will be a resistance to coalescence and 
the effect of this mechanism on coarsening will be 
reduced. Recently, the BWSC [14, 21] theory has been 
incorporated [14] into the LSEM theory and this 
modification is designated the Brailsford Wynblatt 
encounter modified (BWEM) theory. The sensitivity 
of k with the volume fraction is greater than that 
predicted by the LSEM theory. The PSDs for finite 
volume fractions are broader than the LSW distri- 
butions, Fig. 2, comparing more favourably with 
experiment. 

Fig. 3 shows the variation of the ratio of the 
theoretically predicted rate constant, for the theories 
described above, to the LSW rate constant, as a func- 
tion of volume fraction. To test the validity of various 
theories it is not practical to compare the theoretical 
and the experimental PSDs as the number of particles 
needed for statistically significant data is very large. 
Although large quantities of data may be gathered 
automatically using image analysis systems, these do 
not seem to have been used to obtain such data and 
this is probably due to difficulties in processing images 
containing particles which may be overlapping or 
which have poorly defined edges. Comparison of the 
measured variation of k as a function of volume frac- 
tion with theoretical predictions provides a simpler 
method of testing different theories. 
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Figure 3 Variation of k ratio with volume fraction according to 
various theories. 

Some experimental work [24-29] has been done 
specifically to study the effect of volume fraction on 
rate constant, k, in nickel base alloys. The absolute 
values of the predicted rate constants cannot easily be 
compared with experimental values because of a lack 
of information regarding a and D. Most investigations 
[24-26, 28-31] fail to show a volume fraction effect. In 
multi-component systems the situation becomes more 
complex. This can be seen from the work of Biss and 
Sponseller [32] in their study on the effect of molyb- 
denum on the coarsening of 7' in Ni-A1-Cr and 
Ni-A1-Cr-Ti  alloys. From their results on Ni-A1-Cr 
alloys it has been observed [27] that the value of k 
at 42% volume fraction is greater than that at 9% 
volume fraction, which is contrary to the observation 
made by Chellman and Ardell [25]. The measured 
change in the rate constant is about 1.7. The LSEM 
and the BWEM theories predict a variation of 1.4 and 
2.1, respectively. Both theories therefore provide good 
agreement. Work done by Sorokina and Yuganova [33] 
on Ni-A1-Cr-Ti  alloys show a dependence of k on 
volume fraction although they failed to point this out 
[27]. Table I shows the rate constant determined for 
various systems by several workers. A point to be 
observed is that the alloys chosen for study by some 
workers [23, 26, 32] do not necessarily lie on the same 
tie line. This would bring in the effect of compositional 
variation of the phases in the alloys to the measured 
growth kinetics, making it difficult to draw con- 
clusions about the effect of volume fraction. 

The LSW theory has been applied to the analysis of  
the behaviour of liquid-phase sintering systems. Kang 
and Yoon [5, 6] have compared k in Co-Cu and 
Fe-Cu alloys to that predicted by various theories, 
namely Ardell's, LSEM and BW, and they noted that 
their experimental k values did not agree. The reason- 
ing given by them [5] for the disagreement is that the 
shape of  the coarsening particles was not spherical as 
assumed in all the theories. But comparing the exper- 
imental k values with the BWEM [14] theory, Table II 
gave much better agreement, indicating that taking 
into account the occurrence of encounter events and 
choosing the proper diffusion geometry can result in 
better agreement with experiment. From Table II it is 



TAB L E I Coarsening-rate constants, k, for various systems 

Alloy Temp. (K) Volume fraction k (m 3 sec ~) Reference 

Ni-6.35AI 898 0.145 2.12 x 10 ~0 [24] 
Ni-6.71AI 898 0.198 2.00 × 10 .3o 

Ni 6.35A1 988 0.091 7.25 x 10 29 
Ni-6.71A1 988 0.148 6.77 x I0 -29 
Ni-6.71A1 1023 0.125 1.59 x 10 -'~ 
Ni-6.71A1 1048 0.102 3.61 x 10 2~ 

Ni-7A1 1073 0.090 1.10 x 10 27 [25] 
Ni-8AI 1073 0.270 1.06 x 10 27 
Ni-9AI 1073 0.440 1.20 x 10 ~v 
Ni-9.9A1 1073 0.600 1.30 x 10 27 
Ni-16.9Cr-3.4Al 1023 0.275 5.11 x I0 _,9 
Ni-14.2Cr-4.9AI 1023 0.420 5.11 x 10 > 

Ni 40.0Co-17.2Cr 4Ti 1073 0.103 1.76 x 10 > [26] 
Ni-40.0Co-17.0Cr-5Ti 1073 0.140 1.76 × 10 29 
Ni-34.6Co-16.8Cr-6Ti 1073 0.196 1.82 x 10 29 
Ni-40.0Co-17.2Cr-4Ti 1173 0.075 3.41 x 10 2~ 
Ni-40.0Co-17.0Cr-5Ti 1173 0.100 3.23 x 10 2a 
Ni-39.6Co-16.8Cr-6Ti 1173 0.167 3.40 x 10 2~ 

Ni 20Cr-3.5AI 1023 0.190 8.13 x 10 29 [29] 
Ni-20Cr-4.2A1 1023 0.260 8.13 x 10 29 
Ni-20Cr-4.4A1 1023 0.340 8.13 x I0 29 
Ni-20Cr-6.2A1 1023 0.600 8.13 x 10 29 

Ni-20Cr-I.6Ti-0.85AI 1023 0.050 5.63 x 10 --,9 [3I] 
Ni-20Cr-2.6Ti-l.60A1 1023 0.190 1.60 x 10 29 
Ni-20Cr 3.0Ti-2.20Al 1023 0.310 1.60 x 10 29 
Ni-20Cr-4.9Nb-l.75A1 1023 0.140 2.50 x 10 > 
Ni-20Cr-6.3Nb 1.60A1 1023 0.150 2.50 x 10 29 
Ni-20Cr-6.3Nb-2.50A1 1023 0.220 5.63 x 10-29 

Ni 14.3Cr-4.4AI 1198 0.090 1.0l x 10 25 [32] 
Ni-13.5Cr-5.8AI 1198 0.420 1.70 x I0 2s 

Ni-9.3Co-ll.79AI 973 0.160 1.41 × 10 -29 [23] 
Ni 9.5Co-12.60A1 973 0.240 1.79 x 10 29 
Ni-22.1Co 10.77A1 973 0.160 1.09 × 10 29 
Ni-21.7Co-13.40A1 973 0.310 1.11 × 10 29 

o b s e r v e d  t h a t  the  e x p e r i m e n t a l  va lues  o f  k a t  h i g h e r  

v o l u m e  f r a c t i o n s  are  g r e a t e r  t h a n  t h o s e  p r e d i c t e d  by  

the  B W E M  theo ry .  

T h e  v a r i a t i o n  o f  k p r e d i c t e d  by the  v a r i o u s  t heo r i e s  

a t  low v o l u m e  f r a c t i o n s  ( <  2 0 % )  is very  small .  So in 

the  l o w e r  r a n g e  o f  v o l u m e  f r a c t i o n  it is diff icul t  to  

o b s e r v e  e x p e r i m e n t a l l y  the  v a r i a t i o n  o f k  wi th  v o l u m e  

f r ac t ion .  Th is  p r o b l e m  seems  to  h a v e  a r i sen  in the  

w o r k  o f  S e n o  et  al. [7, 8] o n  the  c o a r s e n i n g  o f  c o b a l t  

p r e c i p i t a t e s  in C u - C o  a l loys ,  w h e r e  t hey  c o n c l u d e d  

t h a t  the  k va lue  is i n d e p e n d e n t  o f  v o l u m e  f r ac t i on .  

T h e  v o l u m e  f r ac t i o n  used  r a n g e d  f r o m  0 . 6 9 %  to 

3 .64%.  A c c o r d i n g  to  the  B W E M  t h e o r y  the  k va lue  

s h o u l d  inc rease  by a b o u t  3 5 %  ove r  this  r ange ,  w h i c h  

is r a t h e r  smal l  to  be ver i f ied e x p e r i m e n t a l l y  w i th  

con f idence .  

2.1. Coalescence 
At high volume fractions the possibility of coalescence 
or  e n c o u n t e r s  o f  t w o  p r e c i p i t a t e s  is very  high.  Th is  

p h e n o m e n o n  has  been  o b s e r v e d  b o t h  in s o l i d - p h a s e  

s y s t e m s  [11, 25] a n d  l i q u i d - p h a s e  s y s t e m s  [5, 6]. Fig.  4 

Figure 4 Dark-field micrographs showing coalesced particles in Ni A1 and Ni-A1-Cr alloys. (a) Ni-I6.3 at % A1 alloy aged at 973 K for 72 h. 
(b) Ni 9.7at % Al-17.6at % Cr alloy aged at 1023K for 128h. 
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T A B L E  Il Comparison of k obtained by Kang and Yoon 
[5, 6] with that predicted by the BWEM theory 

Alloy Volume fraction Exp. k ratio BWEM k ratio 

Cu-30Co 0.34 1.00 1.00 
C u 4 0 C o  0.42 1.34 i. 19 
Cu-50Co 0.58 1.79 1.73 
Cu-70Co 0.85 4.07 3.52 
Cu-80Co 0.95 9.48 4.89 

Cu-50Fe 0.59 1.00 1.00 
Cu-70Ee 0.81 1.61 1.76 
Cu-80Fe 0.90 3.00 2.20 

shows microstructures of 7/?' structures in Ni-A1 and 
Ni-AI-Cr systems and some typical coalesced particles 
can be seen. There is some controversy over the physical 
mechanism of encounters. Davies et al. [11], based on 
their work in Ni-Co-A1 alloys, proposed that if two 
precipitate particles grow close enough to each other 
they coalesce forming one particle. Essentially it 
involves overlapping of diffusion fields of the precipi- 
tate particles but not necessarily physical contact in 
the initial stage. Once the particles have coalesced, the 
resulting particle shape is then considered to change 
rapidly to the equilibrium shape by particle/matrix 
surface diffusion. 

According to Doherty [34] coalescence occurs when 
the particles attract each other and move together. 
The driving force for this attraction is the removal of 
the elastically strained matrix between the two pre- 
cipitates due to lattice parameters of the precipitate 
and matrix being different, i.e. the process depends 
on lattice mismatch. Doherty [34] substantiated his 
model of coalescence by referring to the results of 
Rastogi and Ardell [35] in which they found that as the 
lattice mismatch increased there was an increase in 
the maximum observed radius value and also the 
PSD broadened. However, in AI-Li alloys, although 
the lattice misfit was less than 0.1% the PSD was 
broad with an observed cut-off at 1.75 [36-38] and 
the statistical parameters of the PSDs were close to 
those predicted by the LSEM theory [11]. The LSEM 
theory models coalescence events independent of the 
exact mechanism by which it occurs, because the inter- 
action volume for coalescence is a variable which may 
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Figure 5 Comparison of  k obtained by Courtney [79] ((O) Fe-Cu) 
with that predicted by the BWEM ( ), LSEM ( ) and 
GV ( . . . .  ) theories. 

simply be increased if there is a longer range inter- 
action than assumed by Lifshitz and Slyozov [2] and 
Davies et al. [11]. Thus although the mechanism of 
coalescence is not established it is clear from particle 
morphologies that growth by a discontinuous mech- 
anism does occur and should be incorporated in any 
coarsening model. 

In Ni-A1 alloys the ordered 7' (Ni3A1) phase is 
coherent with the matrix. When such particles are 
adjacent to each other there is a probability of 0.25 
that they will be out of phase. If two such particles 
have to coalesce, an anti-phase boundary (APB) must 
be formed with an energy of 220 mJ m -2 [39] which is 
very large compared to the destruction of two particle/ 
matrix surfaces with an energy of about 10mJm 2 
[23]. This would result in an increase of energy if 
these particles coalesced and such an event is unlikely. 
This constraint on coalescence events has not been 
included in either the LSEM or BWEM theories but is 
easily accounted for by the inclusion of the probability 
value in the encounter integral, Equation 17. 

A different mechanism of coalescence has been 
proposed in liquid-phase sintered systems. Kang and 
Yoon [6] proposed that when the grains touch each 
other the coalescence of grains takes place by a mig- 
ration of the grain boundary between them towards 
the smaller grain. This may be due to rapid diffusion 
along the particle/matrix interface as soon as a neck 
is formed between two grains. Kang and Yoon [5] 
observed that the activation energy for coarsening 
remained constant with change in volume fraction, 
indicating that the dominant mechanism for coarsen- 
ing of grains is still volume diffusion through the 
matrix even though the particles are touching each 
other. 

3. S h o r t - c i r c u i t  d i f fus ion  of  solute 
For precipitates lying on high- or low-angle grain 
boundaries, the main solute diffusion paths are the 
grain boundaries themselves. Solute can also flow to 
the particle directly from the volume (Dv) but this 
contribution to its growth is likely to be small except 
at very high temperatures. Dv may be so much smaller 
than D g  b that, though the diffusion cross-section is 
much larger for volume diffusion, the particle gets 
most solute from grain boundaries. Diffusion- 
controlled coarsening on low- and high-angle grain 
boundaries has been the subject of many studies 
[40-47]. The possible paths of solute to the growing 
precipitates other than due to volume diffusion are, (i) 
diffusion along the grain boundary, (ii) pipe diffusion 
along dislocations intersecting the precipitate surface, 
and (iii) diffusion along a dislocation line connecting 
two precipitates resulting in a direct mass transfer. 
Theories developed incorporating the above factors 
are along the lines of the LSW theory, i.e. the basic 
assumptions are the same. 

When the coarsening process is limited by diffusion 
along the grain boundaries, the growth rate is given by 
[41-43, 46] 

dr 2crV2mCeDgbw ( r ) 
dt - 3ABRTr 3 ~ -  1 (18) 
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where Dg b is the diffusion coefficient for diffusion and 
along the grain boundary, w is the grain-boundary 
thickness, A and B are constants and the rest of the D(r) 
terms have been defined previously. For  coarsening by 
diffusion along dislocations the growth rate [47] is 
given by 

a [ NDgb ] 
D 1 + r  2D~n~C/r) J 

D~ ZSo 
+ D a 4 ~ 4 ~ ) 1 , 3  

MDI/2 
+ 

[8D In (l/a)] 1/2 

dr_dr ZqCe(TV2 Dd ( ~ l) (19) 

where Z is the number of dislocation lines crossing the 
surface, q is the dislocation pipe cross-section and Dd 
is the coefficient for diffusion along the dislocation. 
The size-distribution functions have been derived by 
Vengrenovitch [42, 45] for both cases. He discusses a 
transition from statistically uniform distribution to an 
ordered distribution at long ageing times. Physically 
one begins with the precipitates randomly distributed 
throughout the volume, a statistically uniform distri- 
bution. Those precipitates that lie on the dislocations 
or grain boundaries grow faster than the precipitates 
within the matrix. Thus, the precipitates not on dis- 
locations or grain boundaries tend to be smaller in 
size, eventually falling below rc and dissolving. This 
results in an ordered distribution of precipitates which 
tie only on grain boundaries and dislocations after 
very long ageing times. 

The transition from a statistically uniform distri- 
bution to a preferentially ordered arrangement of 
particles on dislocations has been experimentally 
observed by Kreye [47] in an Ni -12 .8a t% A1 alloy 
aged at temperatures in the range 550 to 750 ° C. Also 
in work done on AI-Li alloys by Hosson [48] there is 
clear evidence of the faster growth of coherent pre- 
cipitates lying on dislocations relative to the precipi- 
tates within the volume. 

A dislocation has an associated strain field around 
it. Ardell and Nicholson [49] from their work on 
coarsening of 7' in Ni-A1 alloys observed that the 
precipitates tend to grow only on one side of the 
dislocation while a precipitate-free zone was observed 
on the other side. From this they inferred [49] that the 
strain field of the dislocation results in favourable and 
unfavourable positions for growth of the precipitates. 
Studying the TEM photographs in [49] it is also evident 
that the precipitates lying on dislocations are, on 
average, larger than those in the matrix, furthc" 
confirming that there is an effect of dislocations on 
coarsening. 

Slyozov et al. [43] have discussed the coarsening 
kinetics for the situation where more than one mass 
transport mechanism operates simultaneously. They 
developed an expression for the effective diffusion 
coefficient which appears in the flux equation 

dr De~ 
dt r 

(? - cr) (20) 

where De~ is given by 

D(r) D¢~ - 1 + D(r)/kr 

where a is the lattice constant, M ~ 1, l is the average 
length of the dislocation line, Z is the number of 
dislocation lines crossing the precipitate, So is the 
cross-section of the dislocation tube through which 
the mass transfer takes place, Q0 is the relative excess 
quantity of the material per unit volume and the rest 
of the terms have been defined previously. They con- 
clude that when many mass transfer mechanisms are 
involved simultaneously, the cut-off value of p, i.e. r/?, 
would be in the interval of  1 to 2. In contrast to the 
earlier mentioned modifications, Slyozov et al. [43] 
have accounted for various mass transfer effects by 
modifying the value of the effective diffusion coef- 
ficient appearing in the kinetic equation. 

Clarendon and Fine [50] studied coarsening behav- 
iour in Fe -Ni -AI -Mo alloys aged at 700 °C. They 
compared their size distributions with other modified 
coarsening theories [11, 13, 21]. Though their kinetics 
obeyed ?3 oc t, the PSDs did not agree very well. They 
remarked that short-circuit diffusion paths may be 
responsible for the deviation of their results from 
the theories. Also, coarsening studies of fi-precipitates 
in A l - l l w t %  Mg alloy at 250°C [51] resulted in a 
higher value of interfacial energy and activation 
energy than expected. The reason for this anomalous 
result was suggested to be the occurrence of significant 
short-circuit diffusion at the ageing temperature. 

Smith [52, 53] in a study of coarsening of manga- 
nese precipitates in magnesium and of UA12 precipi- 
tates in uranium, observed cubic rate kinetics at high 
temperature. At lower temperatures, in c~-U, the 
exponent was between 4 and 5 suggesting that dislo- 
cation pipe diffusion controls the growth kinetics. 
This has also been verified by James and Fern [54]. 

To clarify the behaviour of precipitates coarsening 
on dislocations, specific studies of precipitation in 
cold-worked materials would be helpful. 

4. E l a s t i c  s t r a i n s  a n d  e l a s t i c  
i n t e r a c t i o n s  

A precipitate present in a solid matrix has an excess 
energy associated with it. This energy can be split into 
three parts [55]. 

E = Et + E2 + E3 (21) 

E l is the elastic strain energy due to lattice mismatch 
between precipitate and matrix. E2 is the interfacial 
energy of the precipitate. The precipitate takes a par- 
ticular shape so as to minimize E l q- E 2. The third 
term, E3, is the elastic interaction energy between 
precipitates due to overlap of the strain fields when the 
inter-particle distance becomes small. Owing to this 
elastic interaction non-spherical 7' precipitates in ?/7' 
superalloys become aligned along (1 00)  directions. 
This effect has been used to produce rafted structures 
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in superalloys with improved high-temperature creep 
properties [56]. 

The nature of elastic interaction between two par- 
ticles of equal shear modulus has been studied by 
several authors [49, 57-62] for different cases: (i) inter- 
action between particles of equal shear modulus and 
of equal sizes embedded in an isotropic infinite matrix, 
(ii) interaction between particles of equal sizes embed- 
ded in an isotropic infinite matrix, and (iii) interaction 
between particles of equal shear modulus and dissimi- 
lar sizes embedded in an isotropic infinite matrix. As 
deduced by Eshelby [49, 57] the elastic interaction 
energy, E3, between two precipitates A and B with 
equal shear moduli #' in a matrix with shear modulus 
# is 

f A B E 3 = 8#  VA (e~e~ + 2e,ye~) dV 

-~- 6#  f A A A B vB (e,j e U + 2e 0 e 0 ) d V (22) 

where 6# = # ' - #  and it is assumed that the 
transformation strain of each precipitate, e~/is a pure 
dilation. Most coherent 7' precipitates satisfy this 
requirement, so this assumption simplifies the prob- 
lem. Now 

E3 = Ea + E~ (23) 

where Ed is the direct interaction and Es the shape- 
effect interaction. 

Ed = 6# fVA (e°Be~) dV  + 8# fVB (eA eA ) dV  (24) 

= (egi e o ) d V + 28# d V v~ v~ (e¢ ei; ) 

(25) 

From the expression for Ed it can be seen that E d is less 
than zero if 6# is less than zero, i.e. the particles 
will attract each other. If 8# is more than zero the 
particles will repel. The sign of Ed is easy to inspect as 
the integrals are always positive. The same is not true 
for &.  In the case of Ni 3 A1 in nickel-solid solution it 
has been shown [49] that, though E~ is small in mag- 
nitude, it is sufficient to account for the alignment 
without the superimposed effect of E~. E~ is large when 
particles are larger. There is no significant alignment 
at early stages of ageing, it becomes more pronounced 
as the size of the precipitates become larger and also 
it has been shown [49, 59, 60] that when the distance 
between particles, L, is large compared to the size of 
the particles themselves, /73 oc L 6. For  the case of 
homogeneous particles in an anisotropic matrix it has 
been shown [59, 61, 62] that E 3 oc L - 3  and also E3 is 
a function of orientation of the particles in the matrix. 

The theoretical development due to Yamauchi 
and De Fontaine [58], based on microscopic theory 
of elasticity, has been applied by Miyazaki and 
co-workers [55, 63-66] in the study of the effect of 
elastic interactions on the morphology of 7' precipi- 
tates in nickel-base alloys. They observed that in 
certain alloys when the particles are very large, i.e. 
around 0.5#m and greater, the particles split into 
either two or eight particles. 

Recently, Kachaturyan et al. [67] have developed a 
theoretical analysis to model morphological changes 

occurring during coarsening of cubic-shaped precipi- 
tates. In the analysis they assumed that the elastic 
constants of both the precipitate and the matrix 
phases are approximately equal. The model predicts 
the following morphological shape transitions: (1) 
sphere --+ cube, 2a0 ~> 7.7r0, (2) cube --+ doublet, 
2a0 >~ 27r0, (3) doublet --+ octet, 2a0 ~> 82ro, (4) 
octet --+ platelet, 2a0 ~> 377r0, where r0 is the ratio of 
the interracial energy, or, to the elastic energy per unit 
volume, E~, and 2a0 is the edge length of the cube. 
Knowing a and EL it is possible to predict the size at 
which these morphological changes occur. It can be 
easily seen that the predicted values of transitions 
strongly depend on the value of a chosen to calculate 
them. Kachaturyan et al. [67] applied their analysis 
to 7' precipitates in the Ni-AI system and by taking 
a value of 12mJm 2 for a, predicted the morpho- 
logical transitions at (1) sphere --+ cube ~ 7.7nm, 
(2) cube --+ doublet ~ 30 nm, (3)doublet --+ octet 
90nm, (4) octet --+ plate ~ 410 nm. Although there is 
a reasonable agreement between experiment and theory 
in the value of the transition from sphere to cube, the 
other transition values are found to be higher than the 
experimentally observed values [67]. This discrepancy 
is attributed to the finite perturbation required for a 
cube to split into a doublet or an octet or a platelet 
morphology thus allowing a cubic precipitate to retain 
its shape at larger sizes [67]. Also, by choosing a higher 
value of a, the values of the predicted transitions will 
be higher. This model [67] implies that, as the particles 
grow beyond a certain size, they split into smaller 
particles due to the effects of elastic interaction, thus 
not permitting a continuous increase in the mean size 
with increase in ageing time. This leads to a possibility 
of stabilization of the microstructure. If this is true 
then one would expect discontinuities in the plot of 
mean size against time. Careful experimentation 
in a well-characterized system is needed to investigate 
this. 

The splitting phenomenon is just the reverse of 
coalescence in the sense that splitting of precipitates 
leads to a discontinuous decrease in size. One of the 
arguments proposed for coalescence not taking place 
between two particles which are very close to each 
other but out of phase is the necessity of forming an 
APB. If two particles have instantaneously coalesced 
and the size corresponds to the size at which the 
particle should split according to the splitting model, 
then the question arises, will the particle coalesce in 
the first place? Morphology dependence on the size, 
arising out of the splitting model, may be an additional 
effect influencing the resistance to coalescence. A poss- 
ible way of incorporating the splitting process in the 
coarsening theory is through the continuity equation. 
This will bring an additional term very similar to the 
encounter integral in the LSEM theory. 

As we have discussed above, several investigations 
have been directed towards studying elastic interactions 
between two solid particles in a solid matrix. The 
effect this would have on tile diffusion field during 
Ostwald ripening would be interesting but complex to 
study. Lifshitz and Slyozov [3] introduced the effect of 
elastic stress through the flux equation in the original 
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development of  the LSW theory and they concluded 
that it does not effect the asymptotic nature of  the 
particle-size distribution. 

Ardell et al. [49] report that there is a resistance to 
coalescence due to the presence of elastic interactions. 
They also state that the kinetics of  coarsening remain 
unaffected by their presence. When the lattice mismatch 
in alloy systems is small as in the case of  the N i -A l -Cr  
or A1-Li systems, where the precipitates are spherical 
in shape, there is no appreciable alignment. Although 
no systematic study has been made to observe the 
effect of  lattice mismatch on particle coarsening, 
Ardell [30] has made a general observation that as 
the lattice mismatch increases, the greater is the par- 
ticle size found at a particular ageing temperature. 
Although theoretical studies towards predicting the 
influence of elastic strains on the shape morphology 
of growing precipitates has been a topic of interest 
[55, 63, 66-68] its effect on the coarsening kinetics is 
yet to be resolved. Systematic experimental studies 
need to be done to study the effect of  elastic strains on 
coarsening. 

5. Loss of  c o h e r e n c y  
In most of  the experimental work done on coarsening 
the precipitates were, and remained, coherent with the 
matrix. When the precipitate loses its coherency then 
the equilibrium solubility of  the solute in the matrix 
decreases [69]. This would result in a change in the 
values of C~ and a in the rate equation, but they 
change in opposite senses and counteract one another, 
although the change in a would most likely be larger 
than the change in C~. 

6. Type of  growth  control  
Recently [70-72], there has been some discussion on 
whether the particle growth-control mechanism is dif- 
fusion-, interface- or intermediate-type control. 

White and Fisher [70] have studied precipitation 
and growth kinetics of 7' in Nimonic PEI6  alloys 
based on resistivity experiments and have also re-inter- 
preted data on 7' growth in Nimonic PE16 alloys [73]. 
In their theoretical development they define a term 
r* = D/v  where D is the diffusion coefficient of solute 
in the matrix and v is the "transfer velocity" of  solute 
across the particle/matrix interface. The term rc is the 
critical radius below which the growth is controlled by 
interface kinetics and above which it is controlled by 
volume-diffusion kinetics. They conclude [70] that 
most of  the existing data on 7' coarsening falls in the 
transition region. The growth equation given by them 
is 

J(~) = At  + constant (26) 

where /'(~) = (f2 + 8vf3/9D) and A = 64aVmCcv/ 
81kT. White [71] has also developed expressions for 
the PSD evoIved from the transition model. In the 
model the PSD is evaluated in terms of a parameter,  
a, given by r*/rc where r* is the critical radius for 
transition as described above, and rc is the conven- 
tional critical radius. According to White [71], when 

< 1 the PSD defined is for volume-diffusion- 
controlled growth with a cut-off at p = 1.5 which is 

the same as the LSW distribution and as ~ increases 
the growth becomes interface controlled and the 
PSD broadens giving a higher cut-off value. In the 
theoretical development reported by White [71], with 
increase in ageing time the PSD approaches the LSW 
distribution. 

Differentiating between a cubic or square depen- 
dence of the average particle size with time is difficult 
[72]. McLean has reviewed most of the experimental 
growth data on 7' in nickel-based alloys and by con- 
verting data obtained at different ageing temperatures 
to equivalent times at one temperature, has obtained 
data corresponding to ageing times of the order of  
years. McLean [72] concludes that the cubic rate law 
fits the experimental data better than the square rate 
law, confirming that coarsening in these systems is 
volume-diffusion controlled. 

7. Particle mot ion  
Both in the LSW theory and in the modified LSW 
theories the centre to centre distances of particles 
are assumed fixed, a reasonable assumption in solid 
precipitate-solid matrix systems. However, in liquid 
matrix solid particle coarsening systems this assump- 
tion may not be reasonable. There are three sources 
of solid particle motion within a liquid: (i) Brown- 
ian motion; (ii) Stokes motion, i.e. particle settling 
(or rising) due to density differences between the liquid 
and solid; and (iii) convection currents. 

Stevens [74] has calculated the velocity of  a par- 
ticle due to Brownian motion for solid matrix systems 
and concluded that rates of  motion are insignificant 
compared with particle growth rates. However, the 
possibility of Brownian motion significantly affect- 
ing coarsening kinetics arises in liquid-matrix sys- 
tems. Courtney [75-77] has analysed the effects of  
particle motion on coarsening in such systems. The 
time between particle contacts is exceptionally low 
for most liquid-phase sintered systems. Even a small 
density difference can lead to a large number of  par- 
ticle contacts per unit time. Assuming both Brownian 
motion and gravity as potential sources of  contacts 
operating in parallel [78] the time between such con- 
tact is 

"fg ~'br 
1~ b - -  (27) 

Tg Jr- ~br 

where r~ is the time between contacts due to gravity, "Cur 
is the time between contacts due to Brownian motion. 
If  Ostwald ripening contributes to coarsening in the 
system, then the equivalent time [77] for such a process 
to occur is given by 

, _ Trror (28) 
tern 

Tf ~- Tor 

where rr is the time required to fuse two particles, r,,r 
is the time required to remove a particle from the 
system by Ostwald ripening. If % ~ r . . . .  an isolated 
structure is formed. % varies rapidly with volume 
fraction; t're m varies gradually with volume fraction. If  
% <~ ~ ..... a contiguous skeleton-type structure is 
formed, q and ~r which affect r ..... depend on the 
volume fraction but not so strongly as %. The strong 
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dependence ofz b on volume fraction leads to an accel- 
erated coarsening as the structure changes from iso- 
lated to the skeleton type of structure. In the isolated 
structure particles effectively are coarsened by Ost- 
wald ripening but in skeleton structures coarsening 
is considered to occur by coalescence and Ostwald 
ripening [78]. 

Although in liquid-phase sintering coarsening of the 
solid-phase particles has been shown to follow the 
classical LSW volume diffusion kinetics [5, 6], the 
effects of particle motion on coarsening were not con- 
sidered. The experimental data obtained by Courtney 
[79] have been compared with the predictions of the 
BWEM, LSEM and GV theories in Fig. 5. We see that 
the experimental data are consistently higher than the 
theoretical values indicating that the additional effects 
discussed in this section do, indeed, affect the coarsen- 
ing kinetics. 

A collision model of particle coarsening has been 
developed [80] which takes into account coalescence 
of particles from collisions caused by particle motion 
due to gravitational and fluid flow effects. This treat- 
ment could be incorporated in the coarsening theory 
through modification of the continuity equation. 

Ratke and Thieringer [81] have developed a method 
to study the influence of particle motion on coarsening 
under three conditions, namely (i) all particles moving 
with a constant velocity relative to the matrix, (ii) 
particles driven by Marangoni-motion, and (iii) par- 
ticles driven by Stokes motion. They brought in the 
effect of particle motion through the rate equation and 
neglected the effect of a finite volume fraction of par- 
ticles. Their calculations are valid for both solid 
and liquid particles. Later Theiringer and Ratke [82] 
studied the coarsening behaviour of liquid lead par- 
ticles moving at Stokes velocity in a liquid aluminium 
matrix and observed that the experimental PSD agreed 
well with their theoretical distribution. The volume 
fraction of lead particles was low, 0.04, due to removal 
of large particles from the liquid by sedimentation. 
This makes interpretation of the results in terms of 
coarsening rather difficult but is a consequence of 
earth-bound experiments. 

Some experiments have been carried out in a space 
environment [83-85] to study the behaviour of alloy 
systems with a miscibility gap like the Zn-Pb sys- 
tem under microgravity conditions. Liquid-phase sys- 
tems are chosen because the allowable time for the 
experiment is small. It has been shown by Kneissl et al. 
[86] that the necessary experimental conditions to 
study coarsening by Ostwald ripening of liquid lead 
droplets in near-monotectic Zn-Pb alloys without 
the effects of gravity segregation, can be obtained 
with proper design. Such experiments should assist in 
evaluating the effects of particle motion on coarsening 
kinetics. 

8. Thermodynamical ly  non-ideal 
systems 

In the LSW theory the equation for the solute flux to 
the particle uses the Gibbs-Thomson equation which 
is based on ideal solution thermodynamics. Recently, 
Chaix et al. [87, 88] modified the LSW theory to 

3050 

account for significant solid solubility of the main 
constituent of the matrix phase in the particles and 
also departure from ideality of the matrix solution 
phase. The modified LSW rate equation is given by 

f3 _ ?3 _ UA kLs w(t -- t 0) (29) 
(l  - x ~  ~) 

where UA is the driving force correction factor, which 
does not depend on the particle radius. The influence 
of the departure from ideal solution and the effect of 
solid solubility [87] appears in the above equation 
through the factor UA/(1 --X~s). They compared 
their theoretical predictions with experimental data 
on W-Ni-Cr  liquid-phase sintered materials and 
explained the experimentally observed growth-rate 
dependence on composition. Deviation from ideality 
will also affect the value of the diffusion coefficient 
of the solute and should also be considered. Recently, 
liquid-phase sintering experiments in the Fe-Cu and 
Co-Cu systems have shown that inclusion of the ther- 
modynamic factor is necessary in order for coarsening 
theories to predict accurately experimental growth rates 
[89]. This factor will also be important in solid-state 
systems, for example, in the Ni-AI system the thermo- 
dynamic factor modifies the growth rate constant by 
~0.24, resulting in a larger value for the particle 
matrix surface energy determined from experimental 
rate constant data [89]. 

9. Multi-phase precipitates 
Slyozov and Sagalovich [90] have studied the problem 
of coarsening of multi-phase precipitates. The basic 
approach is similar to that adopted by Lifshitz and 
Slyozov [2]. For a system with N components and 
having k phases the diffusion flux equation is given by 

Dino 
J,~; - ( ~ , -  c ; )  (30) 

F 

where J,~ is the flux of the ith component for the sth 
phase, Di is the diffusion coefficient of the ith com- 
ponent, no is the number of atoms per unit volume, ?i 
is the average concentration of the ith component in 
the matrix and C~r is the equilibrium concentration of 
the ith component at the sth phase particle/matrix 
interface. For each of the k phases there is a con- 
tinuity equation similar to Equation 8. Similarly there 
is a kinetic equation for each phase analogous to 
Equation 3. Slyozov and Sagalovich [90] deduce that 
the growth of the individual phases in a multi-com- 
ponent system still corresponds to f3 oc t  kinetics. No 
systematic studies of the coarsening of multi-phase 
particles have been reported in the literature. A poss- 
ible model system for such a study would be the 
Ni-A1-Cr system where both chromium and 7' par- 
ticles coarsen together in a nickel matrix. 

10. Conclusions 
The classical LSW theory has been applied to the 
coarsening process in many different kinds of systems 
with excellent qualitative agreement. LSW theory has 
been modified by several people to account for the 
volume fraction of second-phase particles and these 
modified theories predict dependence of the rate 



constant, k, on the volume fraction of second-phase 
particles. Published experimental coarsening data have 
been either over a narrow range of  volume fraction or 
from the experiments carried out on multi-component 
systems. This has made it difficult to evaluate criti- 
cally the various coarsening theories based on those 
experimental data. Coarsening experiments conducted 
with the objective of testing the theories should 
be designed to permit control of the numerous par- 
ameters involved. This may be achieved by carrying 
out experiments with solid and liquid matrices and 
under microgravity conditions. More extensive evalu- 
ation of coarsening data are required, beyond the time 
dependence of' the growth rate and the form of the 
particle-size distribution. For example, growth-path 
envelope analysis may be applied [91] to experimental 
data to determine growth rates as a function of time 
and critical radii, r~. 

It is clear from the preceding discussion that an 
opportunity exists to modify the coarsening theory to 
take into account various factors expected to affect the 
coarsening kinetics to some extent. The solid foun- 
dation of the LSW theory may be built upon to 
generalize coarsening theory to take account of these 
factors. Not all of the factors discussed above operate 
in every system and in some cases the effect may be 
negligible. However, the attempt to refine the current 
theory is worthwhile because it may then be applied 
with more confidence to predict coarsening behaviour 
in the many systems in which it occurs. It may also 
be used to determine important quantities such as 
particle/matrix surface energies which are often dif- 
ficult to determine by other methods. 

Modifications to the LSW theory can be made 
through the kinetic equation (Equation 3) or through 
the continuity equation (Equation 8), depending 
upon the effect being taken into account. Such modifi- 
cations have been made for most of the factors 
thought to affect coarsening and so the theoretical 
treatments are readily available. It remains for these 
individual modifications to be combined to generalize 
the theory. Introduction of other effects into the 
coarsening theory will refine it further and we believe 
will lead to improved agreement with experiment. 
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